

 Navigation

 	
 index

 	
 next |

 	ImageKit 3.0.4 documentation

 [image: Build Status] [https://travis-ci.org/matthewwithanm/django-imagekit]

ImageKit is a Django app for processing images. Need a thumbnail? A
black-and-white version of a user-uploaded image? ImageKit will make them for
you. If you need to programatically generate one image from another, you need
ImageKit.

For the complete documentation on the latest stable version of ImageKit, see
ImageKit on RTD [http://django-imagekit.readthedocs.org].

Installation

	Install PIL [http://pypi.python.org/pypi/PIL] or Pillow [http://pypi.python.org/pypi/Pillow]. (If you’re using an ImageField in Django,
you should have already done this.)

	pip install django-imagekit

	Add 'imagekit' to your INSTALLED_APPS list in your project’s settings.py

Note

If you’ve never seen Pillow before, it considers itself a
more-frequently updated “friendly” fork of PIL that’s compatible with
setuptools. As such, it shares the same namespace as PIL does and is a
drop-in replacement.

Usage Overview

Specs

You have one image and you want to do something to it to create another image.
But how do you tell ImageKit what to do? By defining an image spec.

An image spec is a type of image generator that generates a new image
from a source image.

Defining Specs In Models

The easiest way to use define an image spec is by using an ImageSpecField on
your model class:

from django.db import models
from imagekit.models import ImageSpecField
from imagekit.processors import ResizeToFill

class Profile(models.Model):
 avatar = models.ImageField(upload_to='avatars')
 avatar_thumbnail = ImageSpecField(source='avatar',
 processors=[ResizeToFill(100, 50)],
 format='JPEG',
 options={'quality': 60})

profile = Profile.objects.all()[0]
print profile.avatar_thumbnail.url # > /media/CACHE/images/982d5af84cddddfd0fbf70892b4431e4.jpg
print profile.avatar_thumbnail.width # > 100

As you can probably tell, ImageSpecFields work a lot like Django’s
ImageFields. The difference is that they’re automatically generated by
ImageKit based on the instructions you give. In the example above, the avatar
thumbnail is a resized version of the avatar image, saved as a JPEG with a
quality of 60.

Sometimes, however, you don’t need to keep the original image (the avatar in
the above example); when the user uploads an image, you just want to process it
and save the result. In those cases, you can use the ProcessedImageField
class:

from django.db import models
from imagekit.models import ProcessedImageField

class Profile(models.Model):
 avatar_thumbnail = ProcessedImageField(upload_to='avatars',
 processors=[ResizeToFill(100, 50)],
 format='JPEG',
 options={'quality': 60})

profile = Profile.objects.all()[0]
print profile.avatar_thumbnail.url # > /media/avatars/MY-avatar.jpg
print profile.avatar_thumbnail.width # > 100

This is pretty similar to our previous example. We don’t need to specify a
“source” any more since we’re not processing another image field, but we do need
to pass an “upload_to” argument. This behaves exactly as it does for Django
ImageFields.

Note

You might be wondering why we didn’t need an “upload_to” argument for our
ImageSpecField. The reason is that ProcessedImageFields really are just like
ImageFields—they save the file path in the database and you need to run
syncdb (or create a migration) when you add one to your model.

ImageSpecFields, on the other hand, are virtual—they add no fields to your
database and don’t require a database. This is handy for a lot of reasons,
but it means that the path to the image file needs to be programmatically
constructed based on the source image and the spec.

Defining Specs Outside of Models

Defining specs as models fields is one very convenient way to process images,
but it isn’t the only way. Sometimes you can’t (or don’t want to) add fields to
your models, and that’s okay. You can define image spec classes and use them
directly. This can be especially useful for doing image processing in views—
particularly when the processing being done depends on user input.

from imagekit import ImageSpec
from imagekit.processors import ResizeToFill

class Thumbnail(ImageSpec):
 processors = [ResizeToFill(100, 50)]
 format = 'JPEG'
 options = {'quality': 60}

It’s probaby not surprising that this class is capable of processing an image
in the exact same way as our ImageSpecField above. However, unlike with the
image spec model field, this class doesn’t define what source the spec is acting
on, or what should be done with the result; that’s up to you:

source_file = open('/path/to/myimage.jpg')
image_generator = Thumbnail(source=source_file)
result = image_generator.generate()

The result of calling generate() on an image spec is a file-like object
containing our resized image, with which you can do whatever you want. For
example, if you wanted to save it to disk:

dest = open('/path/to/dest.jpg', 'w')
dest.write(result.read())
dest.close()

Using Specs In Templates

If you have a model with an ImageSpecField or ProcessedImageField, you can
easily use those processed image just as you would a normal image field:

(This is assuming you have a view that’s setting a context variable named
“profile” to an instance of our Profile model.)

But you can also generate processed image files directly in your template—from
any image—without adding anything to your model. In order to do this, you’ll
first have to define an image generator class (remember, specs are a type of
generator) in your app somewhere, just as we did in the last section. You’ll
also need a way of referring to the generator in your template, so you’ll need
to register it.

from imagekit import ImageSpec, register
from imagekit.processors import ResizeToFill

class Thumbnail(ImageSpec):
 processors = [ResizeToFill(100, 50)]
 format = 'JPEG'
 options = {'quality': 60}

register.generator('myapp:thumbnail', Thumbnail)

Note

You can register your generator with any id you want, but choose wisely!
If you pick something too generic, you could have a conflict with another
third-party app you’re using. For this reason, it’s a good idea to prefix
your generator ids with the name of your app. Also, ImageKit recognizes
colons as separators when doing pattern matching (e.g. in the generateimages
management command), so it’s a good idea to use those too!

Warning

This code can go in any file you want—but you need to make sure it’s loaded!
In order to keep things simple, ImageKit will automatically try to load an
module named “imagegenerators” in each of your installed apps. So why don’t
you just save yourself the headache and put your image specs in there?

Now that we’ve created an image generator class and registered it with ImageKit,
we can use it in our templates!

generateimage

The most generic template tag that ImageKit gives you is called “generateimage”.
It requires at least one argument: the id of a registered image generator.
Additional keyword-style arguments are passed to the registered generator class.
As we saw above, image spec constructors expect a source keyword argument, so
that’s what we need to pass to use our thumbnail spec:

{% load imagekit %}

{% generateimage 'myapp:thumbnail' source=source_image %}

This will output the following HTML:

You can also add additional HTML attributes; just separate them from your
keyword args using two dashes:

{% load imagekit %}

{% generateimage 'myapp:thumbnail' source=source_image -- alt="A picture of Me" id="mypicture" %}

Not generating HTML image tags? No problem. The tag also functions as an
assignment tag, providing access to the underlying file object:

{% load imagekit %}

{% generateimage 'myapp:thumbnail' source=source_image as th %}
Click to download a cool {{ th.width }} x {{ th.height }} image!

thumbnail

Because it’s such a common use case, ImageKit also provides a “thumbnail”
template tag:

{% load imagekit %}

{% thumbnail '100x50' source_image %}

Like the generateimage tag, the thumbnail tag outputs an tag:

Comparing this syntax to the generateimage tag above, you’ll notice a few
differences.

First, we didn’t have to specify an image generator id; unless we tell it
otherwise, thumbnail tag uses the generator registered with the id
“imagekit:thumbnail”. It’s important to note that this tag is *not* using the
Thumbnail spec class we defined earlier; it’s using the generator registered
with the id “imagekit:thumbnail” which, by default, is
imagekit.generatorlibrary.Thumbnail.

Second, we’re passing two positional arguments (the dimensions and the source
image) as opposed to the keyword arguments we used with the generateimage tag.

Like with the generatethumbnail tag, you can also specify additional HTML
attributes for the thumbnail tag, or use it as an assignment tag:

{% load imagekit %}

{% thumbnail '100x50' source_image -- alt="A picture of Me" id="mypicture" %}
{% thumbnail '100x50' source_image as th %}

Using Specs in Forms

In addition to the model field above, there’s also a form field version of the
ProcessedImageField class. The functionality is basically the same (it
processes an image once and saves the result), but it’s used in a form class:

from django import forms
from imagekit.forms import ProcessedImageField
from imagekit.processors import ResizeToFill

class ProfileForm(forms.Form):
 avatar_thumbnail = ProcessedImageField(spec_id='myapp:profile:avatar_thumbnail',
 processors=[ResizeToFill(100, 50)],
 format='JPEG',
 options={'quality': 60})

The benefit of using imagekit.forms.ProcessedImageField (as opposed to
imagekit.models.ProcessedImageField above) is that it keeps the logic for
creating the image outside of your model (in which you would use a normal Django
ImageField). You can even create multiple forms, each with their own
ProcessedImageField, that all store their results in the same image field.

Processors

So far, we’ve only seen one processor: imagekit.processors.ResizeToFill. But
ImageKit is capable of far more than just resizing images, and that power comes
from its processors.

Processors take a PIL image object, do something to it, and return a new one.
A spec can make use of as many processors as you’d like, which will all be run
in order.

from imagekit import ImageSpec
from imagekit.processors import TrimBorderColor, Adjust

class MySpec(ImageSpec):
 processors = [
 TrimBorderColor(),
 Adjust(contrast=1.2, sharpness=1.1),
]
 format = 'JPEG'
 options = {'quality': 60}

The imagekit.processors module contains processors for many common
image manipulations, like resizing, rotating, and color adjustments. However,
if they aren’t up to the task, you can create your own. All you have to do is
define a class that implements a process() method:

class Watermark(object):
 def process(self, image):
 # Code for adding the watermark goes here.
 return image

That’s all there is to it! To use your fancy new custom processor, just include
it in your spec’s processors list:

from imagekit import ImageSpec
from imagekit.processors import TrimBorderColor, Adjust
from myapp.processors import Watermark

class MySpec(ImageSpec):
 processors = [
 TrimBorderColor(),
 Adjust(contrast=1.2, sharpness=1.1),
 Watermark(),
]
 format = 'JPEG'
 options = {'quality': 60}

Note that when you import a processor from imagekit.processors, imagekit
in turn imports the processor from PILKit [https://github.com/matthewwithanm/pilkit]. So if you are looking for
available processors, look at PILKit.

Admin

ImageKit also contains a class named imagekit.admin.AdminThumbnail
for displaying specs (or even regular ImageFields) in the
Django admin change list [https://docs.djangoproject.com/en/dev/intro/tutorial02/#customize-the-admin-change-list]. AdminThumbnail is used as a property on
Django admin classes:

from django.contrib import admin
from imagekit.admin import AdminThumbnail
from .models import Photo

class PhotoAdmin(admin.ModelAdmin):
 list_display = ('__str__', 'admin_thumbnail')
 admin_thumbnail = AdminThumbnail(image_field='thumbnail')

admin.site.register(Photo, PhotoAdmin)

AdminThumbnail can even use a custom template. For more information, see
imagekit.admin.AdminThumbnail.

Management Commands

ImageKit has one management command—generateimages—which will generate cache
files for all of your registered image generators. You can also pass it a list
of generator ids in order to generate images selectively.

Community

Please use the GitHub issue tracker [https://github.com/matthewwithanm/django-imagekit/issues]
to report bugs with django-imagekit. A mailing list [https://groups.google.com/forum/#!forum/django-imagekit]
also exists to discuss the project and ask questions, as well as the official
#imagekit channel on Freenode.

Contributing

We love contributions! And you don’t have to be an expert with the library—or
even Django—to contribute either: ImageKit’s processors are standalone classes
that are completely separate from the more intimidating internals of Django’s
ORM. If you’ve written a processor that you think might be useful to other
people, open a pull request so we can take a look!

You can also check out our list of open, contributor-friendly issues [https://github.com/matthewwithanm/django-imagekit/issues?labels=contributor-friendly&state=open] for
ideas.

Check out our contributing guidelines [https://github.com/matthewwithanm/django-imagekit/blob/develop/CONTRIBUTING.rst] for more information about pitching in
with ImageKit.

Authors

ImageKit was originally written by Justin Driscoll [http://github.com/jdriscoll].

The field-based API and other post-1.0 stuff was written by the bright people at
HZDG [http://hzdg.com].

Maintainers

	Matthew Tretter [http://github.com/matthewwithanm]

	Bryan Veloso [http://github.com/bryanveloso]

	Chris Drackett [http://github.com/chrisdrackett]

	Greg Newman [http://github.com/gregnewman]

Contributors

	Josh Ourisman [http://github.com/joshourisman]

	Jonathan Slenders [http://github.com/jonathanslenders]

	Eric Eldredge [http://github.com/lettertwo]

	Chris McKenzie [http://github.com/kenzic]

	Markus Kaiserswerth [http://github.com/mkai]

	Ryan Bagwell [http://github.com/ryanbagwell]

	Alexander Bohn [http://github.com/fish2000]

	Timothée Peignier [http://github.com/cyberdelia]

	Madis Väin [http://github.com/madisvain]

	Jan Sagemüller [https://github.com/version2]

	Clay McClure [https://github.com/claymation]

	Jannis Leidel [https://github.com/jezdez]

	Sean Bell [https://github.com/seanbell]

	Saul Shanabrook [https://github.com/saulshanabrook]

Indices and tables

	Index

	Module Index

	Search Page

	Configuration
	Settings

	Advanced Usage
	Models

	Source Groups

	Caching
	Default Backend Workflow

	Optimizing

	Upgrading from 2.x
	Model Specs

	Image Cache Backends

	Conditional model processors

	Conditonal cache_to file names

	Processors have moved to PILKit

 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ImageKit 3.0.4 documentation

Configuration

Settings

	
django.conf.settings.IMAGEKIT_CACHEFILE_DIR

	

	Default :	'CACHE/images'

The directory to which image files will be cached.

	
django.conf.settings.IMAGEKIT_DEFAULT_FILE_STORAGE

	

	Default :	None

The qualified class name of a Django storage backend to use to save the
cached images. If no value is provided for IMAGEKIT_DEFAULT_FILE_STORAGE,
and none is specified by the spec definition, your default file storage [https://docs.djangoproject.com/en/dev/ref/settings/#default-file-storage]
will be used.

	
django.conf.settings.IMAGEKIT_DEFAULT_CACHEFILE_BACKEND

	

	Default :	'imagekit.cachefiles.backends.Simple'

Specifies the class that will be used to validate cached image files.

	
django.conf.settings.IMAGEKIT_DEFAULT_CACHEFILE_STRATEGY

	

	Default :	'imagekit.cachefiles.strategies.JustInTime'

The class responsible for specifying how and when cache files are
generated.

	
django.conf.settings.IMAGEKIT_CACHE_BACKEND

	

	Default :	If DEBUG is True, 'django.core.cache.backends.dummy.DummyCache'.

Otherwise, 'default'.

The Django cache backend to be used to store information like the state of
cached images (i.e. validated or not).

	
django.conf.settings.IMAGEKIT_CACHE_PREFIX

	

	Default :	'imagekit:'

A cache prefix to be used when values are stored in IMAGEKIT_CACHE_BACKEND

	
django.conf.settings.IMAGEKIT_CACHEFILE_NAMER

	

	Default :	'imagekit.cachefiles.namers.hash'

A function responsible for generating file names for non-spec cache files.

	
django.conf.settings.IMAGEKIT_SPEC_CACHEFILE_NAMER

	

	Default :	'imagekit.cachefiles.namers.source_name_as_path'

A function responsible for generating file names for cache files that
correspond to image specs. Since you will likely want to base the name of
your cache files on the name of the source, this extra setting is provided.

 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ImageKit 3.0.4 documentation

Advanced Usage

Models

The ImageSpecField Shorthand Syntax

If you’ve read the README, you already know what an ImageSpecField is and
the basics of defining one:

from django.db import models
from imagekit.models import ImageSpecField
from imagekit.processors import ResizeToFill

class Profile(models.Model):
 avatar = models.ImageField(upload_to='avatars')
 avatar_thumbnail = ImageSpecField(source='avatar',
 processors=[ResizeToFill(100, 50)],
 format='JPEG',
 options={'quality': 60})

This will create an avatar_thumbnail field which is a resized version of the
image stored in the avatar image field. But this is actually just shorthand
for creating an ImageSpec, registering it, and associating it with an
ImageSpecField:

from django.db import models
from imagekit import ImageSpec, register
from imagekit.models import ImageSpecField
from imagekit.processors import ResizeToFill

class AvatarThumbnail(ImageSpec):
 processors = [ResizeToFill(100, 50)]
 format = 'JPEG'
 options = {'quality': 60}

register.generator('myapp:profile:avatar_thumbnail', AvatarThumbnail)

class Profile(models.Model):
 avatar = models.ImageField(upload_to='avatars')
 avatar_thumbnail = ImageSpecField(source='avatar',
 id='myapp:profile:avatar_thumbnail')

Obviously, the shorthand version is a lot, well…shorter. So why would you ever
want to go through the trouble of using the long form? The answer is that the
long form—creating an image spec class and registering it—gives you a lot more
power over the generated image.

Specs That Change

As you’ll remember from the README, an image spec is just a type of image
generator that generates a new image from a source image. How does the image
spec get access to the source image? Simple! It’s passed to the constructor as
a keyword argument and stored as an attribute of the spec. Normally, we don’t
have to concern ourselves with this; the ImageSpec knows what to do with the
source image and we’re happy to let it do its thing. However, having access to
the source image in our spec class can be very useful…

Often, when using an ImageSpecField, you may want the spec to vary based on
properties of a model. (For example, you might want to store image dimensions on
the model and then use them to generate your thumbnail.) Now that we know how to
access the source image from our spec, it’s a simple matter to extract its model
and use it to create our processors list. In fact, ImageKit includes a utility
for getting this information.

from django.db import models
from imagekit import ImageSpec, register
from imagekit.models import ImageSpecField
from imagekit.processors import ResizeToFill
from imagekit.utils import get_field_info

class AvatarThumbnail(ImageSpec):
 format = 'JPEG'
 options = {'quality': 60}

 @property
 def processors(self):
 model, field_name = get_field_info(self.source)
 return [ResizeToFill(model.thumbnail_width, thumbnail.avatar_height)]

register.generator('myapp:profile:avatar_thumbnail', AvatarThumbnail)

class Profile(models.Model):
 avatar = models.ImageField(upload_to='avatars')
 avatar_thumbnail = ImageSpecField(source='avatar',
 id='myapp:profile:avatar_thumbnail')
 thumbnail_width = models.PositiveIntegerField()
 thumbnail_height = models.PositiveIntegerField()

Now each avatar thumbnail will be resized according to the dimensions stored on
the model!

Of course, processors aren’t the only thing that can vary based on the model of
the source image; spec behavior can change in any way you want.

Source Groups

When you run the generateimages management command, how does ImageKit know
which source images to use with which specs? Obviously, when you define an
ImageSpecField, the source image is being connected to a spec, but what’s going
on underneath the hood?

The answer is that, when you define an ImageSpecField, ImageKit automatically
creates and registers an object called a source group. Source groups are
responsible for two things:

	They dispatch signals when a source is saved, and

	They expose a generator method that enumerates source files.

When these objects are registered (using imagekit.register.source_group()),
their signals will trigger callbacks on the cache file strategies associated
with image specs that use the source. (So, for example, you can chose to
generate a file every time the source image changes.) In addition, the generator
method is used (indirectly) to create the list of files to generate with the
generateimages management command.

Currently, there is only one source group class bundled with ImageKit—the one
used by ImageSpecFields. This source group
(imagekit.specs.sourcegroups.ImageFieldSourceGroup) represents an ImageField
on every instance of a particular model. In terms of the above description, the
instance ImageFieldSourceGroup(Profile, 'avatar') 1) dispatches a signal
every time the image in Profile’s avatar ImageField changes, and 2) exposes a
generator method that iterates over every Profile’s “avatar” image.

Chances are, this is the only source group you will ever need to use, however,
ImageKit lets you define and register custom source groups easily. This may be
useful, for example, if you’re using the template tags “generateimage” and
“thumbnail” and the optimistic cache file strategy. Again, the purpose is
to tell ImageKit which specs are used with which sources (so the
“generateimages” management command can generate those files) and when the
source image has been created or changed (so that the strategy has the
opportunity to act on it).

A simple example of a custom source group class is as follows:

import glob
import os

class JpegsInADirectory(object):
 def __init__(self, dir):
 self.dir = dir

 def files(self):
 os.chdir(self.dir)
 for name in glob.glob('*.jpg'):
 yield open(name)

Instances of this class could then be registered with one or more spec id:

from imagekit import register

register.source_group('myapp:profile:avatar_thumbnail', JpegsInADirectory('/path/to/some/pics'))

Running the “generateimages” management command would now cause thumbnails to be
generated (using the “myapp:profile:avatar_thumbnail” spec) for each of the
JPEGs in /path/to/some/pics.

Note that, since this source group doesnt send the source_saved signal, the
corresponding cache file strategy callbacks would not be called for them.

 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ImageKit 3.0.4 documentation

Caching

Default Backend Workflow

ImageSpec

At the heart of ImageKit are image generators. These are classes with a
generate() method which returns an image file. An image spec is a type of
image generator. The thing that makes specs special is that they accept a source
image. So an image spec is just an image generator that makes an image from some
other image.

ImageCacheFile

However, an image spec by itself would be vastly inefficient. Every time an
an image was accessed in some way, it would have be regenerated and saved.
Most of the time, you want to re-use a previously generated image, based on the
input image and spec, instead of generating a new one. That’s where
ImageCacheFile comes in. ImageCacheFile is a File-like object that
wraps an image generator. They look and feel just like regular file
objects, but they’ve got a little trick up their sleeve: they represent files
that may not actually exist!

Cache File Strategy

Each ImageCacheFile has a cache file strategy, which abstracts away when
image is actually generated. It can implement the following three methods:

	on_content_required - called by ImageCacheFile when it requires the
contents of the generated image. For example, when you call read() or
try to access information contained in the file.

	on_existence_required - called by ImageCacheFile when it requires the
generated image to exist but may not be concerned with its contents. For
example, when you access its url or path attribute.

	on_source_saved - called when the source of a spec is saved

The default strategy only defines the first two of these, as follows:

class JustInTime(object):
 def on_content_required(self, file):
 file.generate()

 def on_existence_required(self, file):
 file.generate()

Cache File Backend

The generate method on the ImageCacheFile is further delegated to the
cache file backend, which abstracts away how an image is generated.

The cache file backend defaults to the setting
IMAGEKIT_DEFAULT_CACHEFILE_BACKEND and can be set explicitly on a spec with
the cachefile_backend attribute.

The default works like this:

	
	Checks the file storage to see if a file exists

	
	If not, caches that information for 5 seconds

	If it does, caches that information in the IMAGEKIT_CACHE_BACKEND

If file doesn’t exsit, generates it immediately and synchronously

That pretty much covers the architecture of the caching layer, and its default
behavior. I like the default behavior. When will an image be regenerated?
Whenever it needs to be! When will your storage backend get hit? Depending on
your IMAGEKIT_CACHE_BACKEND settings, as little as twice per file (once for the
existence check and once to save the generated file). What if you want to change
a spec? The generated file name (which is used as part of the cache keys) vary
with the source file name and spec attributes, so if you change any of those, a
new file will be generated. The default behavior is easy!

Note

Like regular Django ImageFields, IK doesn’t currently cache width and height
values, so accessing those will always result in a read. That will probably
change soon though.

Optimizing

There are several ways to improve the performance (reduce I/O operations) of
ImageKit. Each has its own pros and cons.

Caching Data About Generated Files

The easiest, and most significant improvement you can make to improve the
performance of your site is to have ImageKit cache the state of your generated
files. The default cache file backend will already do this (if DEBUG is
False), using your default Django cache backend, but you can make it way
better by setting IMAGEKIT_CACHE_BACKEND. Generally, once a file is
generated, you will never be removing it; therefore, if you can, you should set
IMAGEKIT_CACHE_BACKEND to a cache backend that will cache forever.

Pre-Generating Images

The default cache file backend generates images immediately and synchronously.
If you don’t do anything special, that will be when they are first requested—as
part of request-response cycle. This means that the first visitor to your page
will have to wait for the file to be created before they see any HTML.

This can be mitigated, though, by simply generating the images ahead of time, by
running the generateimages management command.

Note

If using with template tags, be sure to read Source Groups.

Deferring Image Generation

As mentioned above, image generation is normally done synchronously. through
the default cache file backend. However, you can also take advantage of
deferred generation. In order to do this, you’ll need to do two things:

	install django-celery [https://pypi.python.org/pypi/django-celery]

	tell ImageKit to use the async cachefile backend.
To do this for all specs, set the IMAGEKIT_DEFAULT_CACHEFILE_BACKEND in
your settings

IMAGEKIT_DEFAULT_CACHEFILE_BACKEND = 'imagekit.cachefiles.backends.Async'

Images will now be generated asynchronously. But watch out! Asynchrounous
generation means you’ll have to account for images that haven’t been generated
yet. You can do this by checking the truthiness of your files; if an image
hasn’t been generated, it will be falsy:

{% if not profile.avatar_thumbnail %}

{% else %}

{% endif %}

Or, in Python:

profile = Profile.objects.all()[0]
if profile.avatar_thumbnail:
 url = profile.avatar_thumbnail.url
else:
 url = '/path/to/placeholder.jpg'

Removing Safeguards

Even with pre-generating images, ImageKit will still try to ensure that your
image exists when you access it by default. This is for your benefit: if you
forget to generate your images, ImageKit will see that and generate it for you.
If the state of the file is cached (see above), this is a pretty cheap
operation. However, if the state isn’t cached, ImageKit will need to query the
storage backend.

For those who aren’t willing to accept that cost (and who never want ImageKit
to generate images in the request-responce cycle), there’s the “optimistic”
cache file strategy. This strategy only generates a new image when a spec’s
source image is created or changed. Unlike with the “just in time” strategy,
accessing the file won’t cause it to be generated, ImageKit will just assume
that it already exists.

To use this cache file strategy for all specs, set the
IMAGEKIT_DEFAULT_CACHEFILE_STRATEGY in your settings:

IMAGEKIT_DEFAULT_CACHEFILE_STRATEGY = 'imagekit.cachefiles.strategies.Optimistic'

If you have specs that change based on attributes of the source, that’s not going to cut it, though; the file will also need to
be generated when those attributes change. Likewise, image generators that don’t
have sources (i.e. generators that aren’t specs) won’t cause files to be
generated automatically when using the optimistic strategy. (ImageKit can’t know
when those need to be generated, if not on access.) In both cases, you’ll have
to trigger the file generation yourself—either by generating the file in code
when necessary, or by periodically running the generateimages management
command. Luckily, ImageKit makes this pretty easy:

from imagekit.cachefiles import LazyImageCacheFile

file = LazyImageCacheFile('myapp:profile:avatar_thumbnail', source=source_file)
file.generate()

One final situation in which images won’t be generated automatically when using
the optimistic strategy is when you use a spec with a source that hasn’t been
registered with it. Unlike the previous two examples, this situation cannot be
rectified by running the generateimages management command, for the simple
reason that the command has no way of knowing it needs to generate a file for
that spec from that source. Typically, this situation would arise when using the
template tags. Unlike ImageSpecFields, which automatically register all the
possible source images with the spec you define, the template tags
(“generateimage” and “thumbnail”) let you use any spec with any source.
Therefore, in order to generate the appropriate files using the
generateimages management command, you’ll need to first register a source
group that represents all of the sources you wish to use with the corresponding
specs. See Source Groups for more information.

 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	ImageKit 3.0.4 documentation

Upgrading from 2.x

ImageKit 3.0 introduces new APIs and tools that augment, improve, and in some
cases entirely replace old IK workflows. Below, you’ll find some useful guides
for migrating your ImageKit 2.0 apps over to the shiny new IK3.

Model Specs

IK3 is chock full of new features and better tools for even the most
sophisticated use cases. Despite this, not too much has changed when it
comes to the most common of use cases: processing an ImageField on a model.

In IK2, you may have used an ImageSpecField on a model to process an
existing ImageField:

class Profile(models.Model):
 avatar = models.ImageField(upload_to='avatars')
 avatar_thumbnail = ImageSpecField(image_field='avatar',
 processors=[ResizeToFill(100, 50)],
 format='JPEG',
 options={'quality': 60})

In IK3, things look much the same:

class Profile(models.Model):
 avatar = models.ImageField(upload_to='avatars')
 avatar_thumbnail = ImageSpecField(source='avatar',
 processors=[ResizeToFill(100, 50)],
 format='JPEG',
 options={'quality': 60})

The major difference is that ImageSpecField no longer takes an
image_field kwarg. Instead, you define a source.

Image Cache Backends

In IK2, you could gain some control over how your cached images were generated
by providing an image_cache_backend:

class Photo(models.Model):
 ...
 thumbnail = ImageSpecField(..., image_cache_backend=MyImageCacheBackend())

This gave you great control over how your images are generated and stored,
but it could be difficult to control when they were generated and stored.

IK3 retains the image cache backend concept (now called cache file backends),
but separates the ‘when’ control out to cache file strategies:

class Photo(models.Model):
 ...
 thumbnail = ImageSpecField(...,
 cachefile_backend=MyCacheFileBackend(),
 cachefile_strategy=MyCacheFileStrategy())

If you are using the IK2 default image cache backend setting:

IMAGEKIT_DEFAULT_IMAGE_CACHE_BACKEND = 'path.to.MyImageCacheBackend'

IK3 provides analogous settings for cache file backends and strategies:

IMAGEKIT_DEFAULT_CACHEFILE_BACKEND = 'path.to.MyCacheFileBackend'
IMAGEKIT_DEFAULT_CACHEFILE_STRATEGY = 'path.to.MyCacheFileStrategy'

See the documentation on cache file backends and cache file strategies
for more details.

Conditional model processors

In IK2, an ImageSpecField could take a processors callable instead of
an iterable, which allowed processing decisions to made based on other
properties of the model. IK3 does away with this feature for consistency’s sake
(if one kwarg could be callable, why not all?), but provides a much more robust
solution: the custom spec. See the advanced usage documentation for more.

Conditonal cache_to file names

IK2 provided a means of specifying custom cache file names for your
image specs by passing a cache_to callable to an ImageSpecField.
IK3 does away with this feature, again, for consistency.

There is a way to achieve custom file names by overriding your spec’s
cachefile_name, but it is not recommended, as the spec’s default
behavior is to hash the combination of source, processors, format,
and other spec options to ensure that changes to the spec always result in
unique file names. See the documentation on specs for more.

Processors have moved to PILKit

Processors have moved to a separate project: PILKit [https://github.com/matthewwithanm/pilkit]. You should not have to
make any changes to an IK2 project to use PILKit–it should be installed with
IK3, and importing from imagekit.processors will still work.

 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	ImageKit 3.0.4 documentation

Index

 I

I

 	

 	IMAGEKIT_CACHE_BACKEND (in module django.conf.settings)

 	IMAGEKIT_CACHE_PREFIX (in module django.conf.settings)

 	IMAGEKIT_CACHEFILE_DIR (in module django.conf.settings)

 	IMAGEKIT_CACHEFILE_NAMER (in module django.conf.settings)

 	

 	IMAGEKIT_DEFAULT_CACHEFILE_BACKEND (in module django.conf.settings)

 	IMAGEKIT_DEFAULT_CACHEFILE_STRATEGY (in module django.conf.settings)

 	IMAGEKIT_DEFAULT_FILE_STORAGE (in module django.conf.settings)

 	IMAGEKIT_SPEC_CACHEFILE_NAMER (in module django.conf.settings)

 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		ImageKit 3.0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.1.3.

_static/comment-close.png

_themes/README.html

 Navigation

 		
 index

 		ImageKit 3.0.4 documentation »

krTheme Sphinx Style

This repository contains sphinx styles Kenneth Reitz uses in most of
his projects. It is a drivative of Mitsuhiko’s themes for Flask and Flask related
projects. To use this style in your Sphinx documentation, follow
this guide:

		put this folder as _themes into your docs folder. Alternatively
you can also use git submodules to check out the contents there.

		add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'kr'

The following themes exist:

		kr

		the standard flask documentation theme for large projects

		kr_small

		small one-page theme. Intended to be used by very small addon libraries.

 Created using Sphinx 1.1.3.

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

