
ImageKit Documentation
Release 1.1.0

Justin Driscoll, Bryan Veloso, Greg Newman, Chris Drackett & Matthew Tretter

February 13, 2012

CONTENTS

1 Installation 3

2 Adding Specs to a Model 5

3 Processors 7

4 Admin 9

5 Commands 11

6 Authors 13
6.1 Maintainers . 13
6.2 Contributors . 13

7 Digging Deeper 15
7.1 API Reference . 15
7.2 Changelog . 15

8 Indices and tables 17

Python Module Index 19

i

ii

ImageKit Documentation, Release 1.1.0

ImageKit is a Django app that helps you to add variations of uploaded images to your models. These variations are
called “specs” and can include things like different sizes (e.g. thumbnails) and black and white versions.

CONTENTS 1

ImageKit Documentation, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1. Install PIL or Pillow. If you’re using ‘ImageField‘s in Django, you should have already done this.

2. pip install django-imagekit (or clone the source and put the imagekit module on your path)

3. Add ’imagekit’ to your INSTALLED_APPS list in your project’s settings.py

Note: If you’ve never seen Pillow before, it considers itself a more-frequently updated “friendly” fork of PIL that’s
compatible with setuptools. As such, it shares the same namespace as PIL does and is a drop-in replacement.

3

http://pypi.python.org/pypi/PIL
http://pypi.python.org/pypi/Pillow

ImageKit Documentation, Release 1.1.0

4 Chapter 1. Installation

CHAPTER

TWO

ADDING SPECS TO A MODEL

Much like django.db.models.ImageField, Specs are defined as properties of a model class:

from django.db import models
from imagekit.models import ImageSpec

class Photo(models.Model):
original_image = models.ImageField(upload_to=’photos’)
formatted_image = ImageSpec(image_field=’original_image’, format=’JPEG’,

options={’quality’: 90})

Accessing the spec through a model instance will create the image and return an ImageFile-like object (just like with
a normal django.db.models.ImageField):

photo = Photo.objects.all()[0]
photo.original_image.url # > ’/media/photos/birthday.tiff’
photo.formatted_image.url # > ’/media/cache/photos/birthday_formatted_image.jpeg’

Check out imagekit.models.ImageSpec for more information.

5

ImageKit Documentation, Release 1.1.0

6 Chapter 2. Adding Specs to a Model

CHAPTER

THREE

PROCESSORS

The real power of ImageKit comes from processors. Processors take an image, do something to it, and return the
result. By providing a list of processors to your spec, you can expose different versions of the original image:

from django.db import models
from imagekit.models import ImageSpec
from imagekit.processors import resize, Adjust

class Photo(models.Model):
original_image = models.ImageField(upload_to=’photos’)
thumbnail = ImageSpec([Adjust(contrast=1.2, sharpness=1.1),

resize.Crop(50, 50)], image_field=’original_image’,
format=’JPEG’, options={’quality’: 90})

The thumbnail property will now return a cropped image:

photo = Photo.objects.all()[0]
photo.thumbnail.url # > ’/media/cache/photos/birthday_thumbnail.jpeg’
photo.thumbnail.width # > 50
photo.original_image.width # > 1000

The original image is not modified; thumbnail is a new file that is the result of running the
imagekit.processors.resize.Crop processor on the original.

The imagekit.processors module contains processors for many common image manipulations, like resizing,
rotating, and color adjustments. However, if they aren’t up to the task, you can create your own. All you have to do is
implement a process() method:

class Watermark(object):
def process(self, image):

Code for adding the watermark goes here.
return image

class Photo(models.Model):
original_image = models.ImageField(upload_to=’photos’)
watermarked_image = ImageSpec([Watermark()], image_field=’original_image’,

format=’JPEG’, options={’quality’: 90})

7

ImageKit Documentation, Release 1.1.0

8 Chapter 3. Processors

CHAPTER

FOUR

ADMIN

ImageKit also contains a class named imagekit.admin.AdminThumbnail for displaying specs (or even regular
ImageFields) in the Django admin change list. AdminThumbnail is used as a property on Django admin classes:

from django.contrib import admin
from imagekit.admin import AdminThumbnail
from .models import Photo

class PhotoAdmin(admin.ModelAdmin):
list_display = (’__str__’, ’admin_thumbnail’)
admin_thumbnail = AdminThumbnail(image_field=’thumbnail’)

admin.site.register(Photo, PhotoAdmin)

AdminThumbnail can even use a custom template. For more information, see
imagekit.admin.AdminThumbnail.

9

https://docs.djangoproject.com/en/dev/intro/tutorial02/#customize-the-admin-change-list

ImageKit Documentation, Release 1.1.0

10 Chapter 4. Admin

CHAPTER

FIVE

COMMANDS

11

ImageKit Documentation, Release 1.1.0

12 Chapter 5. Commands

CHAPTER

SIX

AUTHORS

ImageKit was originally written by Justin Driscoll.

The field-based API was written by the bright minds at HZDG.

6.1 Maintainers

• Bryan Veloso

• Matthew Tretter

• Chris Drackett

• Greg Newman

6.2 Contributors

• Josh Ourisman

• Jonathan Slenders

• Eric Eldredge

• Chris McKenzie

• Markus Kaiserswerth

• Ryan Bagwell

• Alexander Bohn

13

http://github.com/jdriscoll
http://hzdg.com
http://github.com/bryanveloso
http://github.com/matthewwithanm
http://github.com/chrisdrackett
http://github.com/gregnewman
http://github.com/joshourisman
http://github.com/jonathanslenders
http://github.com/lettertwo
http://github.com/kenzic
http://github.com/mkai
http://github.com/ryanbagwell
http://github.com/fish2000

ImageKit Documentation, Release 1.1.0

14 Chapter 6. Authors

CHAPTER

SEVEN

DIGGING DEEPER

7.1 API Reference

7.1.1 models Module

7.1.2 processors Module

members

7.1.3 admin Module

class imagekit.admin.AdminThumbnail(image_field, template=None)
A convenience utility for adding thumbnails to Django’s admin change list.

Parameters

• image_field – The name of the ImageField or ImageSpec on the model to use for the thumb-
nail.

• template – The template with which to render the thumbnail

7.2 Changelog

7.2.1 v1.1.0

• A SmartCrop resize processor was added. This allows an image to be cropped based on the amount of entropy
in the target image’s histogram.

• The quality argument was removed in favor of an options dictionary. This is a more general solution
which grants access to PIL’s format-specific options (including “quality”, “progressive”, and “optimize” for
JPEGs).

• The TrimColor processor was renamed to TrimBorderColor.

• The private _Resize class has been removed.

15

ImageKit Documentation, Release 1.1.0

7.2.2 v1.0.3

• ImageSpec._create() was renamed ImageSpec.generate() and is now available in the public API.

• Added an AutoConvert processor to encapsulate the transparency handling logic.

• Refactored transparency handling to be smarter, handling a lot more of the situations in which one would convert
to or from formats that support transparency.

• Fixed PIL zeroing out files when write mode is enabled.

7.2.3 v1.0.2

• Added this changelog.

• Enhanced extension detection, format detection, and conversion between the two. This eliminates the reliance
on an image being loaded into memory beforehand in order to detect said image’s extension.

• Fixed a regression from the 0.4.x series in which ImageKit was unable to convert a PNG file in P or “palette”
mode to JPEG.

7.2.4 v1.0.1

• Minor fixes related to the rendering of README.rst as a reStructured text file.

• Fixed the included admin template not being found when ImageKit was and the packaging of the included admin
templates.

7.2.5 v1.0

• Initial release of the new field-based ImageKit API.

16 Chapter 7. Digging Deeper

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

17

ImageKit Documentation, Release 1.1.0

18 Chapter 8. Indices and tables

PYTHON MODULE INDEX

i
imagekit.admin, 15

19

	Installation
	Adding Specs to a Model
	Processors
	Admin
	Commands
	Authors
	Maintainers
	Contributors

	Digging Deeper
	API Reference
	Changelog

	Indices and tables
	Python Module Index

